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ABSTRACT: New snow density is a key parameter for daily forecasting of avalanche hazard. However, 
there is currently not a reliable automated measurement of new snow density to provide data for the daily 
avalanche bulletin issued by the Bridger-Teton National Forest Avalanche Center. Although precipitation 
gauges at automated weather stations provide water content data, the measurements can be inaccurate 
in certain conditions. In this study we use 42 seasons of manual daily snow density measurements along 
with air temperature and wind speed data to derive equations to estimate new snow density. We use lin-
ear least squares regression techniques to find best-fit second-order polynomial solutions for three on-
mountain stations, and provide analysis of the statistical significance of solutions. This work has resulted 
in a new snow density calculator that allows avalanche forecasters to quickly estimate the water equiva-
lent of new snow (SWE) for various locations by entering 24-hr mean air temperature and 24-hr total wind 
kilometers. This tool is specific to data collected at the Jackson Hole Mountain Resort but may be useful 
to other avalanche forecasting operations. 
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1. INTRODUCTION 

Providing reliable measurements of new snow 
density or the water equivalent of new snow 
(SWE) is a key component of avalanche hazard 
forecasting, where density can greatly affect snow 
stability. To report 24-hr new snow and SWE totals 
for the daily 7 AM forecast, the Bridger-Teton Na-
tional Forest Avalanche Center primarily relies on 
automated measurements from four weather sta-
tions located at Jackson Hole Mountain Resort 
(Figure 1). As has been recognized in previous 
work (e.g. MacDonald and Pomeroy, 2007; Ras-
mussen, 2012), measurements from automatic 
precipitation gauges can be inaccurate in certain 
conditions. We find that high winds can induce un-
dercatchment (particularly for elevated gauges), 
snow can drift and bridge into the gauge opening 
(then falling into the gauge after a storm has 
ended), and occasionally the gauge fluid can par-
tially freeze in very cold conditions.  
 
In this study we have developed an additional tool 
to aid in the estimation of SWE for new snow. Us-
ing 42 seasons of manual daily snow density 

measurements (1974 - 2016) along with daily air 
temperature and wind speed data, we derive 
equations to estimate new snow density.  
 
 

 
Figure 1. Rendezvous Bowl study plot (2,920 m) at 
Jackson Hole Mountain Resort, showing the ETI 
precipitation gauge and Judd Communications ul-
trasonic sensors for total snow depth (upper left) 
and new snow (bottom right). 

* Corresponding author address:  
Patrick J. Wright, Inversion Labs  
Wilson, WY 83014;  
email: pwright@inversionlabs.com 

1179

Proceedings, International Snow Science Workshop, Breckenridge, Colorado, 2016

1180



 

 

2. METHODS 
 
This study utilizes historical daily measurements of 
new snow density and air temperature from three 
snow study plots at Jackson Hole Mountain Re-
sort: Mid-Mountain Plot (2,493 m), Raymer Plot 
(2,853 m), and Rendezvous Bowl Plot (2,920 m). 
We analyze the relationship between 24-hr new 
snow density and 24-hr mean air temperature for 
each station, and between 24-hr new snow density 
and total 24-hr wind kilometers at the Summit wind 
station (3,185 m). Using the Python module Stats-
models we calculate the ordinary least squares 
(OLS) regression (2nd-order polynomial), in addi-
tion to quantile regression, confidence intervals, 
and prediction intervals to quantify the variability of 
the data (Figures 2 - 5). We then extend the analy-
sis to calculate the best-fit OLS surface to predict 
new snow density as a function of both wind 
speed and air temperature (Figure 6). 
 
We use 24-hr new snow totals of 2.5 cm (1 in) or 
greater, and corresponding snow water equivalent 
(SWE) measurements taken with a SnowMetrics  
snow board sampling tube. Density is reported as 
a dimensionless fraction, following standard defini-
tions (Greene et al., 2010).  Date ranges are lim-
ited to December 15 – March 30 to reduce the 
number of estimated new snow measurements 

from periods outside the mountain operation sea-
son when mountain access is limited. However, 
we observe a large bias towards 0.10 (and 0.05) in 
the new snow density dataset, likely an artifact of 
days where SWE was estimated, rather than 
measured. 
 
3. RESULTS 
 
We find that changes in previous 24-hr mean air 
temperature and total wind kilometers correlate 
with changes in 24-hr new snow density for three 
study plots at Jackson Hole Mountain Resort (Fig-
ures 2 - 5). This relationship is statistically signifi-
cant at all study plots for air temperature as a 
predictor variable (p-values < 0.05 for all polyno-
mial terms), and is less significant for wind speed 
(some p-values > 0.05). Although the addition of 
wind improves the model fit compared to tempera-
ture alone, wind is a less-significant predictor of 
density than temperature (for all stations). 
 
Using the model solution for both air temperature 
and wind speed as predictor variables (Figure 6), 
we have developed a web-based javascript calcu-
lator that allows users to enter previous 24-hr air 
temperature and wind speed data to estimate cor-
responding new snow density (Figure 7).

 
 

 
Figure 2. Quantile regression showing the distribution of new snow density vs. 24-hr mean air tempera-
ture for the mid-mountain study plot (N=1583). The best-fit ordinary least squares (OLS) regression line is 
shown in bold (2nd order polynomial, R2=0.18). 
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Figure 3. Prediction and confidence intervals for new snow density vs. 24-hr mean air temperature for the 
mid-mountain study plot (N=1583). The best-fit ordinary least squares (OLS) regression line is shown in 
bold (2nd order polynomial, R2=0.18). 
 
 
 

 
Figure 4. Quantile regression showing the distribution of new snow density at the mid-mountain study plot 
vs. total 24-hr wind kilometers at the summit (N=1583). The best-fit ordinary least squares (OLS) regres-
sion line is shown in bold (2nd order polynomial, R2=0.08). 
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Figure 5. Prediction and confidence intervals for new snow density at the mid-mountain study plot vs. total 
24-hr wind kilometers at the summit (N=1583). The best-fit ordinary least squares (OLS) regression line is 
shown in bold (2nd order polynomial, R2=0.08). 
  

 
 
Figure 6. Best-fit surface (OLS 2nd order polynomial) for the mid-mountain study plot, used to estimate 
new snow density as a function of mean 24-hr air temperature and summit total 24-hr wind kilometers. 
The best-fit surface utilizes historical daily measurements (1974 - 2016) of new snow density, air temper-
ature, and wind speed (N=1583). 
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Figure 7. Screenshot of the online density calcula-
tor tool, allowing rapid estimation of new snow 
density. 
 
4. DISCUSSION 
  
Our analysis is similar to previous work that pro-
vides SWE estimates based on the relationship 
between snow density and regional snow climates 
(e.g. Mock and Birkeland, 2000; Jonas and Mag-
nusson, 2009; Sturm et al., 2010). However, our 
analysis is intended to represent variability within a 
single climate zone or forecast area, where new 
snow density can vary with air temperature and 
wind speed associated with individual storm 
events. 
 
The density trends we observe likely arise from 
processes defined in previous work. The size and 
shape of snow crystal formation in the atmosphere 
is dependent on both air temperature and water 
vapor supersaturation (Whiteman, 2000; Lib-
brecht, 2005), which directly affects the density of 
new snow layers upon deposition. New snow can 
then further change in density as a function of sur-
face air temperature over the 24-hr period. In addi-
tion, wind transport and re-circulation in the 
atmosphere can mechanically alter the size and 
shape of snow crystals before deposition and can 
create density changes through wind-packing dur-
ing deposition (Whiteman, 2000; McClung and 
Schaerer, 2006). Although our analysis accounts 
for the physical mechanisms associated with air 
temperature and wind, our results are potentially 
limited by neglecting additional variables that af-
fect new snow density such as settlement, wind 
redistribution after deposition, and solar radiation 
effects (warming and/or sublimation). 
 

We also caution that although the best-fit model 
used to estimate new snow density is an accurate 
representation of the mean of the historical data, 
individual daily predictions using the model can 
vary widely within the range of density measure-
ments (as shown by large prediction intervals, rel-
atively large standard error, and low R2 values). 
 
5. CONCLUSIONS 
 
An analysis of 42 seasons of meteorological data 
from study plots at the Jackson Hole Mountain Re-
sort shows a relationship between air temperature, 
wind speed, and measured new snow density. 
This work has resulted in a density calculator tool 
that allows avalanche forecasters to quickly esti-
mate the water equivalent of new snow (SWE) for 
three on-mountain locations by entering 24-hr 
mean air temperature and 24-hr total wind kilome-
ters. This tool provides statistically-supported 
SWE estimates when conditions prevent reliable 
measurements from automated precipitation 
gauges. The tool is specific to data collected at the 
Jackson Hole Mountain Resort but may be useful 
to other avalanche forecasting operations. 
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